Регистрация | Вход

Объявление

Свернуть
Пока нет объявлений.

«Время электроники»: Как технологии распознавания лиц меняют наш мир

Свернуть
X
 
  • Фильтр
  • Время
  • Показать
Очистить всё
новые сообщения

    «Время электроники»: Как технологии распознавания лиц меняют наш мир



    Технология распознавания лиц российской NtechLab признана Национальным институтом стандартов и технологий США лучшей в мире. Как она сделает мир безопаснее и изменит жизнь человечества?

    Убийц и грабителей ловят за считаные секунды; чтобы поставить диагноз, врачу можно просто сфотографировать пациента; студентам больше не нужно сдавать экзамены — умные камеры в аудиториях сами определят, кто недостаточно хорошо изучил материал. Такое будущее пророчат человечеству создатели систем распознавания лиц — специальных камер, которые уже сегодня встречаются почти во всех сферах жизни. С их помощью можно отслеживать преступников, бесконтактно расплачиваться в магазинах и проходить через турникеты в метро. Какие возможности биометрия даст бизнесу, медицине, образованию и как с помощью технологии распознавания лиц мир станет безопаснее и удобнее — «Лента.ру» разбиралась в рамках проекта «КиберРеальность».

    Начало 1960-х годов. Несколько человек сидят за столом и измеряют линейкой лица на распечатанных фотографиях. Их интересует ширина рта, высота лба и характеристики других черт лица: эти данные нужны, чтобы помочь слабым компьютерам научиться распознавать лица. Если сегодня для обучения искусственного интеллекта достаточно загрузить в него миллионы фотографий, то у американских ученых Вуди Бледсо, Хелен Чен Вульф и Чарльза Биссона такой возможности попросту не было.

    На заре создания технологии распознавания лиц процесс обучения программы длился долго. Чтобы ускорить его, ученые обзавелись специальным электронным графическим планшетом — одним из первых в своем роде. С его помощью Бледсо определял координаты черт лица — это в разы сокращало время обучения системы.

    Разработанный в 60-е алгоритм действительно умел определять человека по фотографии, однако технология была далека от совершенства: машину легко могла сбить с толку улыбка или признаки старения.

    Все изменилось, когда наработками ученых заинтересовались американские власти. В 1967 году они предложили Бледсо и инженеру-исследователю Питеру Харту разработать систему, с помощью которой полицейские могли бы быстрее сверять фото потенциальных преступников со снимками в своей базе данных. В итоге ученые создали две программы, которые уже тогда в разы превосходили человека по скорости: машина справлялась за три минуты с задачей, на которую у полицейского уходило шесть часов. Правда, широкая общественность узнала о достижениях Бледсо и Харта лишь недавно — до 2005 года информация об их исследовании была засекречена.

    Позже японцу Такео Канадэ удалось вычеркнуть из процесса человеческое вмешательство и автоматизировать распознавание лиц, а исследователи Майкл Кирби и Лоуренс Сирович помогли программе справиться с идентификацией человека на разных фотографиях независимо от положения головы и масштабов изображения. Вскоре американцы Мэтью Турк и Алекс Пентланд усовершенствовали этот алгоритм, совместив его с технологией распознавания лиц. С момента появления первых таких систем прошло 60 лет, и технология шагнула намного дальше, чем это можно было представить.

    2017 год. В не самом криминальном регионе Великобритании — Южном Уэльсе — произошло не самое громкое преступление, но его раскрытие стало вехой в истории распознавания лиц. Оборудованный камерой фургон засек преступника, лицо которого находилось в базе данных правоохранителей. Его арест стал первым случаем задержания преступника благодаря системе распознавания лиц.

    Прошло несколько лет, и уже мало кого удивляет, что с помощью этой технологии можно искать правонарушителей внутри страны, защищать границы государств и даже предотвращать теракты. В той же Великобритании для проверки посетителей массовых мероприятий используют камеры с умными алгоритмами: рядом со входом устанавливают специально оборудованный фургон с датчиками на крыше. Они сканируют лица проходящих людей и сверяют полученные снимки с базой данных преступников и правонарушителей. Как только система замечает в толпе человека из базы, она быстро оповещает об этом полицейских. Столицу Великобритании Лондон вообще называют рекордсменом по количеству камер наружного наблюдения: в 2019 году их было более 420 тысяч.

    Немало умных камер и в США. 19 из 24 правительственных агентств США так или иначе уже используют систему распознавания лиц. Например, в министерствах энергетики и обороны применяют систему под названием TacID Guard Dog. Она позволяет определять, кто именно посещал стратегически важные объекты. А министерство внутренней безопасности использует специальную систему для распознавания людей на границах между штатами. ФБР в своих расследованиях нередко опирается на данные, полученные с помощью подобных камер.

    В будущем власти США планируют внедрять технологии распознавания лиц практически во все сферы жизни, а желающие скрыться от умных алгоритмов создают специальные карты, на которых отмечают, где появились новые устройства.

    Рекордсменом по количеству камер, оснащенных умными алгоритмами, стал Китай. В крупных городах страны они развешаны примерно через каждые 100 метров. Считается, что в Поднебесной расположена почти половина всех умных камер мира — около 400 миллионов. Технологию используют не только для поиска преступников, но и для сбора информации, влияющей на социальный рейтинг китайцев, — пока проект работает только в паре пилотных регионов, но если власти признают эксперимент успешным, к нему присоединятся и другие города.

    Железнодорожные вокзалы, аэропорты, туристические достопримечательности, выставочные комплексы, парки и офисные здания — камеры в Китае установлены буквально на каждом шагу. Нарушителям порядка не удастся скрыться от правосудия нигде, даже в общественном туалете.

    Тем не менее настоящий прорыв в системах распознавания лиц произошел не в далеком Пекине, а в Москве. Все началось с того, что выпускник факультета вычислительной математики и кибернетики МГУ Артем Кухаренко создал приложение для распознавания пород собак. Друзья показали его работу потенциальному инвестору, после чего было решено не ограничиваться собаками, а нацелиться на более перспективный рынок — распознавание человеческих лиц.

    ...


    Прочитать в оригинале…
    Последний раз редактировалось Darya; 03-11-2021, 16:46.
    Взято автоматически из интернета.

Похожие темы

Тема Автор Раздел Последнее сообщение
2002—2022 «ЭтЛайт»
Наши контакты: +7 (812) 309-50-30, client@efind.ru
Реклама · Участие в поиске · Инструменты · Блог · Аналитика · English version

  ExpoElectronica RADEL
Обработка...
X